Abstract

AbstractThe combustion of coal liberates arsenic, selenium, cadmium, and cesium into the environment. These toxic metals, which are discharged with the flue gas or collected with fly ash, may vaporize in the hot portions of the combustor then return to the solid phase in cooler zones of the process downstream. Understanding the mechanisms by which toxic metals partition between the vapor and solid phases is an important step for predicting and mitigating the effect of these metals upon the environment. An investigation of these partitioning mechanisms was performed. The results suggest that the dominant heterogeneous partitioning mechanism for transformation to the solid phase in the post‐combustion zone is the reaction of metal vapor on the surface or within the pores of a supermicron ash particle for the Pittsburgh seam and Illinois #6 coals but not for the Ohio blend coal. A relationship between the concentration of supermicron phase arsenic, selenium, and cadmium to calcium was also observed, suggesting the formation of As‐Ca, Se‐Ca, and Cd‐Ca reaction products. Selenium appears to be more reactive than arsenic for the formation of these calcium‐based complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.