Abstract

The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in a city of Central China were determined in the settled dust and its extracted water phase from different land use types and bus stops in Nanchang City. The physicochemical properties of its water extracted dissolved organic matter (WEOM) were characterized to investigate the effect of fluorescence organic matter on the dust-water partitioning coefficients (Kd) using three-dimensional excitation-emission matrix fluorescence spectroscopy combined parallel factor analysis. Results showed that the range of ∑PAHs in settled dust and the extracted water phase was 0.05–15.92 μg·g−1 and 2–211 ng·L−1, respectively. These PAHs mostly came from the combustion of biomass. The risk assessment showed that PAHs in dust had no obvious health risk (less than the magnitude of 10−6). Additionally, the high molecular weight (HMW) PAHs and the low molecular weight (LMW) PAHs were preferentially adsorbed by dust and the dissolved portion, respectively. It was confirmed by the relatively high logKd values of 4.23 for the HMW-PAHs. Pearson correlation analysis suggested that the higher concentration of dissolved organic carbon and humic-like substance were in favor of PAHs in dust released into waters. This study can provide information on pollution control when considering the impact of fluorescent organic matter on the fate and transport of PAHs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.