Abstract

Six-dimensional (2, 0) theory can be defined on a large class of six-manifolds endowed with some additional topological and geometric data (i.e. an orientation, a spin structure, a conformal structure, and an R-symmetry bundle with connection). We discuss the nature of the object that generalizes the partition function of a more conventional quantum theory. This object takes its values in a certain complex vector space, which fits together into the total space of a complex vector bundle (the `partition bundle') as the data on the six-manifold is varied in its infinite-dimensional parameter space. In this context, an important role is played by the middle-dimensional intermediate Jacobian of the six-manifold endowed with some additional data (i.e. a symplectic structure, a quadratic form, and a complex structure). We define a certain hermitian vector bundle over this finite-dimensional parameter space. The partition bundle is then given by the pullback of the latter bundle by the map from the parameter space related to the six-manifold to the parameter space related to the intermediate Jacobian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.