Abstract

BackgroundMuscarinic receptors (mAChRs) of the preoptic and anterior hypothalamus areas (POA-AHA) regulate ovulation in an asymmetric manner during the estrous cycle. The aims of the present study were to analyze the effects of a temporal blockade of mAChRs on either side of the POA-AHA performed in diestrus-2 rats on ovulation, the levels of estradiol, follicle stimulating hormone (FSH) and luteinizing hormone (LH) and the mechanisms involved in changes in ovulation.MethodsCyclic rats on diestrus-2 day were anesthetized and randomly assigned to the following groups: 1) microinjection of 1 μl of saline or atropine solution (62.5 ng) in the left or right POA-AHA; 2) removal (unilateral ovariectomty, ULO) of the left (L-ULO) or right (R-ULO) ovary, and 3) rats microinjected with atropine into the left or right POA-AHA plus L-ULO or R-ULO. The ovulation rate and the number of ova shed were measured during the predicted estrus, as well as the levels of estradiol, FSH and LH during the predicted proestrus and the effects of injecting synthetic LH-releasing hormone (LHRH) or estradiol benzoate (EB).ResultsAtropine in the left POA-AHA decreased both the ovulation rate and estradiol and LH levels on the afternoon of proestrus, also LHRH or EB injection restored ovulation. L- or R-ULO resulted in a lower ovulation rate and smaller number of ova shed, and only injection of LHRH restored ovulation. EB injection at diestrus-2 restored ovulation in animals with L-ULO only. The levels of estradiol, FSH and LH in rats with L-ULO were higher than in animals with unilateral laparotomy. In the group microinjected with atropine in the left POA-AHA, ovulation was similar to that in ULO rats. In contrast, atropine in the right POA-AHA of ULO rats blocked ovulation, an action that was restored by either LHRH or EB injection.ConclusionsThese results indicated that the removal of a single ovary at noon on diestrus-2 day perturbed the neuronal pathways regulating LH secretion, which was mediated by the muscarinic system connecting the right POA-AHA and the ovaries.

Highlights

  • Muscarinic receptors of the preoptic and anterior hypothalamus areas (POA-AHA) regulate ovulation in an asymmetric manner during the estrous cycle

  • Effects of transient blockade of Muscarinic receptors (mAChRs) in the left or right POA-AHA on spontaneous ovulation The ovulation rate, number of ova shed and ovarian weight were similar in the vehicle and the intact group

  • The ovulation rate was lower in animals with atropine injected in the left POA-AHA than in the vehicle group, and it did not change when atropine was injected in the right side

Read more

Summary

Introduction

Muscarinic receptors (mAChRs) of the preoptic and anterior hypothalamus areas (POA-AHA) regulate ovulation in an asymmetric manner during the estrous cycle. The aims of the present study were to analyze the effects of a temporal blockade of mAChRs on either side of the POA-AHA performed in diestrus-2 rats on ovulation, the levels of estradiol, follicle stimulating hormone (FSH) and luteinizing hormone (LH) and the mechanisms involved in changes in ovulation. The preovulatory period of the estrous cycle is characterized by the rapid growth of ovarian follicles and the increased secretion of estradiol (E2). Ovarian E2 secreted on diestrus-2 day is required to activate the LH surge on proestrus day, since the injection of estrogen antagonists [2] or estradiol antiserum [3] or ovariectomy [4] during diestrus-2 day block the preovulatory LH surge. The participation of the muscarinic cholinergic system is relevant to the regulation of ovulation which varies throughout the estrous cycle and has a circadian rhythm [10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.