Abstract

1H-MRS variability increases due to normal aging and also as a result of atrophy in grey and white matter caused by neurodegeneration. In this work, an automatic process was developed to integrate data from spectra and high-resolution anatomical images to quantify metabolites, taking into account tissue partial volumes within the voxel of interest avoiding additional spectra acquisitions required for partial volume correction. To evaluate this method, we use a cohort of 135 subjects (47 male and 88 female, aged between 57 and 99 years) classified into 4 groups: 38 healthy participants, 20 amnesic mild cognitive impairment patients, 22 multi-domain mild cognitive impairment patients, and 55 Alzheimer's disease patients. Our findings suggest that knowing the voxel composition of white and grey matter and cerebrospinal fluid is necessary to avoid partial volume variations in a single-voxel study and to decrease part of the variability found in metabolites quantification, particularly in those studies involving elder patients and neurodegenerative diseases. The proposed method facilitates the use of 1H-MRS techniques in statistical studies in Alzheimer's disease, because it provides more accurate quantitative measurements, reduces the inter-subject variability, and improves statistical results when performing group comparisons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.