Abstract
A term, also called a tree, is said to be linear, if each variable occurs in the term only once. The linear terms and sets of linear terms, the so-called linear tree languages, play some role in automata theory and in the theory of formal languages in connection with recognizability. We define a partial superposition operation on sets of linear trees of a given type τ and study the properties of some many-sorted partial clones that have sets of linear trees as elements and partial superposition operations as fundamental operations. The endomorphisms of those algebras correspond to nondeterministic linear hypersubstitutions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.