Abstract

Our investigation in the present paper is based on three important results. (1) In [14], Ringel introduced Hall algebra for representations of a quiver over finite fields and proved the elements corresponding to simple representations satisfy the quantum Serre relation. This gives a realization of the nilpotent part of quantum group if the quiver is of finite type. (2) In [6], Green found a homological formula for the representation category of the quiver and equipped Ringel's Hall algebra with a comultiplication. The generic form of the composition subalgebra of Hall algebra generated by simple representations realizes the nilpotent part of quantum group of any type. (3) In [11], Lusztig defined induction and restriction functors for the perverse sheaves on the variety of representations of the quiver which occur in the direct images of constant sheaves on flag varieties, and he found a formula between his induction and restriction functors which gives the comultiplication as algebra homomorphism for quantum group. In the present paper, we prove the formula holds for all semisimple complexes with Weil structure. This establishes the categorification of Green's formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.