Abstract

The whitefly, Bemisia tabaci (Gennadius) cryptic species Mediterranean (MED), is a destructive insect pest worldwide. In order to contribute to controlling B. tabaci by non-chemical methods, we examined the possibility of using a combination of trap/barrier crops and a parasitoid natural enemy in cotton. We performed field experiments using cantaloupe (Cucumis melo) and sunflower (Helianthus annuus) as trap crops and maize (Zea mays) as a barrier crop combined with periodic releases of the parasitoid Eretmocerus hayati in Hebei Province, Northern China. All treatments significantly reduced immature whitefly densities. Parasitism rate was significantly higher in cotton plots intercropped with sunflower and with perimeter-planted cantaloupe. Adult whitefly density was negatively related to parasitoid abundance and was significantly lower in cotton plots intercropped with maize than in the control plots. Intercropping was more effective than perimeter-planting at reducing B. tabaci densities and increasing yield. Parasitoid dispersal was not hampered by barrier crops, indicating that the two methods of control are compatible. These results contribute to the development of integrated pest management methods against this important pest.

Highlights

  • Pest control in modern agriculture has been traditionally reliant on the use of synthetic pesticides

  • The emerging problems of pesticide residues, resistance in pests [1], and the damage to natural enemies and various other beneficial arthropods and ecological processes triggered the development of alternative methods of pest control, conceptualized as integrated pest management (IPM) [2]

  • There were no differences from the control; results varied according to barrier plant than in plots intercropped with cantaloupe or maize or intercropping system, and densities of adults versus immature were occasionally different

Read more

Summary

Introduction

Pest control in modern agriculture has been traditionally reliant on the (initially indiscriminate) use of synthetic pesticides. The emerging problems of pesticide residues, resistance in pests [1], and the damage to natural enemies and various other beneficial arthropods and ecological processes triggered the development of alternative methods of pest control, conceptualized as integrated pest management (IPM) [2]. Pests can be manipulated by attracting or deterring them [9] or by hampering their dispersal by the use of border plants to protect the crop [10,11]. These are especially promising when dealing with pests that have a history of fast development of resistance to multiple pesticides

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.