Abstract

BackgroundA number of apicomplexan genomes have been sequenced successfully in recent years and this would help in understanding the biology of apicomplexan parasites. The members of the phylum Apicomplexa are important protozoan parasites (Plasmodium, Toxoplasma and Cryptosporidium etc) that cause some of the deadly diseases in humans and animals. In our earlier studies, we have shown that the standard BLOSUM matrices are not suitable for compositionally biased apicomplexan proteins. So we developed a novel series (SMAT and PfFSmat60) of substitution matrices which performed better in comparison to standard BLOSUM matrices and developed ApicoAlign, a sequence search and alignment tool for apicomplexan proteins. In this study, we demonstrate the higher specificity of these matrices and make an attempt to improve the annotation of apicomplexan kinases and proteases.ResultsThe ROC curves proved that SMAT80 performs best for apicomplexan proteins followed by compositionally adjusted BLOSUM62 (PSI-BLAST searches), BLOSUM90 and BLOSUM62 matrices in terms of detecting true positives. The poor E-values and/or bit scores given by SMAT80 matrix for the experimentally identified coccidia-specific oocyst wall proteins against hematozoan (non-coccidian) parasites further supported the higher specificity of the same. SMAT80 uniquely detected (missed by BLOSUM) orthologs for 1374 apicomplexan hypothetical proteins against SwissProt database and predicted 70 kinases and 17 proteases. Further analysis confirmed the conservation of functional residues of kinase domain in one of the SMAT80 detected kinases. Similarly, one of the SMAT80 detected proteases was predicted to be a rhomboid protease.ConclusionsThe parasite specific substitution matrices have higher specificity for apicomplexan proteins and are helpful in detecting the orthologs missed by BLOSUM matrices and thereby improve the annotation of apicomplexan proteins which are hypothetical or with unknown function.

Highlights

  • A number of apicomplexan genomes have been sequenced successfully in recent years and this would help in understanding the biology of apicomplexan parasites

  • We further demonstrated that the amino acid compositions of proteins of nine apicomplexan parasites (Toxoplasma gondii, Neospora caninum, Theileria parva, Cryptosporidium parvum, P. berghei, P. chabaudi, P. knowlesi, P. vivax and P. yoelii yoelii) were similar to that of P. falciparum and because of this unusual amino acid composition of apicomplexan proteins these matrices performed better even for other apicomplexan proteins [10]

  • SMAT80 detected more true positives In order to assess the performance of different matrices in terms of true and false positives, we used the method adopted by Brick and co-workers [11]

Read more

Summary

Results

The ROC curves proved that SMAT80 performs best for apicomplexan proteins followed by compositionally adjusted BLOSUM62 (PSI-BLAST searches), BLOSUM90 and BLOSUM62 matrices in terms of detecting true positives. The poor E-values and/or bit scores given by SMAT80 matrix for the experimentally identified coccidia-specific oocyst wall proteins against hematozoan (non-coccidian) parasites further supported the higher specificity of the same. SMAT80 uniquely detected (missed by BLOSUM) orthologs for 1374 apicomplexan hypothetical proteins against SwissProt database and predicted 70 kinases and 17 proteases. Further analysis confirmed the conservation of functional residues of kinase domain in one of the SMAT80 detected kinases. One of the SMAT80 detected proteases was predicted to be a rhomboid protease

Conclusions
Background
Results and discussion
Conclusion
Materials and methods
Templeton TJ
17. Hanks SK
21. Blackman MJ
26. PiroplasmaDB
30. CryptoDB
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call