Abstract

Geometry is a source of inspiration in the design and making of the manmade world. Computing techniques provide tools to explore complex forms: the research question is how computational tool can be systemised to assist with the translation of geometric concepts into physical objects. The purpose is to describe computational/manufacturing methods for creating digital models and physical objects from regular geometric configurations. The methods are based on parametric design, assisting from ideation to the generation of digital models with material specifications - using the five regular convex polyhedra as a case study. The results are comprised of digital models used for prototyping with 3D printing technologies and hybrid fabrication processes: the products are built geometric shapes ranging from body ornaments to sculptures. These procedures can be extended to generate designs based on irregular geometric shapes. Parametric-based methods are recommended in the digital modelling and fabrication of any geometric form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.