Abstract

Pyrophanite (MnTiO3) has been discovered for the first time in Argentina, associated with metamorphosed Fe ore in the Sierra de Comechingones, Province of Cordoba. The Fe ore mainly consists of magnetite, and contains large grains of Ti-rich magnetite, showing a complex unmixing assemblage composed of pyrophanite, manganoan ilmenite, an aluminous spinel, and hematite. The gangue minerals associated with the oxides are, in order of decreasing abundance, clinopyroxene, garnet, titanite, amphibole, clintonite, calcite, chlorite, quartz and rare epidote. Electron-microprobe analyses show extensive solid-solution among the end-members pyrophanite, ilmenite, and geikielite (MgTiO3). The unmixed assemblage may have been derived from oxidation of a former Mn–Mg-rich magnetite–ulvospinel solid solution, under metamorphic conditions. The lack of Mn in the silicate gangue associated with the Fe ore excludes the possible influence of Mn-rich fluids during metamorphism, and suggests that Mn was an important constituent of the original oxide protolith. Geothermometry applied to the chlorite associated with the oxides yielded temperatures as low as 300–350°C, possibly consistent with the closure of the metamorphic system. However, textural and mineralogical evidence suggest that the temperature of metamorphism was much higher, and possibly reached a stage of partial melting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.