Abstract
Abstract. Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. Technological advances allow us to measure multiple GHGs simultaneously, and now it is possible to provide complete GHG budgets from soils (i.e., CO2, CH4, and N2O fluxes). We propose that there is a conflict between the convenience of simultaneously measuring multiple soil GHG fluxes at fixed time intervals (e.g., once or twice per month) and the intrinsic temporal variability in and patterns of different GHG fluxes. Information derived from fixed time intervals – commonly done during manual field campaigns – had limitations to reproducing statistical properties, temporal dependence, annual budgets, and associated uncertainty when compared with information derived from continuous measurements (i.e., automated hourly measurements) for all soil GHG fluxes. We present a novel approach (i.e., temporal univariate Latin hypercube sampling) that can be applied to provide insights and optimize monitoring efforts of GHG fluxes across time. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals (mainly when measurements are limited to once per month), but an optimized sampling approach can be used to reduce bias and uncertainty. These results have implications for assessing GHG fluxes from soils and consequently reduce uncertainty in the role of soils in nature-based solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.