Abstract

Abstract We study the parabolic $p$-Laplacian system in a bounded domain. We deduce optimal convergence rates for the space–time discretization based on an implicit Euler scheme in time. Our estimates are expressed in terms of Nikolskiǐ spaces and therefore cover situations when the (gradient of the) solution has only fractional derivatives in space and time. The main novelty is that, different to all previous results, we do not assume any coupling condition between the space and time resolutions $h$ and $\tau $. For this we show that the $L^2$-projection is compatible with the quasi-norm. The theoretical error analysis is complemented by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.