Abstract

This paper treats initial-boundary-value problems governing the motion in space of nonlinearly viscoelastic rods of strain-rate type. It introduces and exploits a set of physically natural constitutive hypotheses to prove that solutions exist for all time and depend continuously on the data. The equations are those for a very general properly invariant theory of rods that can suffer flexure, torsion, extension, and shear. In this theory, the contact forces and couples depend on strains measuring these effects and on the time derivatives of these strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.