Abstract

The evolutionarily conserved Par-3/Par-6/aPKC complex is essential for the establishment and maintenance of polarity of a wide range of cells. Both Par-3 and Par-6 are PDZ domain containing scaffold proteins capable of binding to polarity regulatory proteins. In addition to three PDZ domains, Par-3 also contains a conserved N-terminal oligomerization domain (NTD) that is essential for proper subapical membrane localization and consequently the functions of Par-3. The molecular basis of NTD-mediated Par-3 membrane localization is poorly understood. Here, we describe the structure of a monomeric form of the Par-3 NTD. Unexpectedly, the domain adopts a PB1-like fold with both type-I and type-II structural features. The Par-3 NTD oligomerizes into helical filaments via front-to-back interactions. We further demonstrate that the NTD-mediated membrane localization of Par-3 in MDCK cells is solely attributed to its oligomerization capacity. The data presented in this study suggest that the Par-3 NTD is likely to facilitate the assembly of higher-order Par-3/Par-6/aPKC complex with increased avidities in targeting the complex to the subapical membrane domain and in binding to other polarity-regulating proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.