Abstract

We measure the extinction curve in the central 200 pc of M31 at mid-ultraviolet to near-infrared wavelengths (from 1928A to 1.5{\mu}m), using Swift/UVOT and HST WFC3/ACS observations in thirteen bands. Taking advantage of the high angular resolution of the HST WFC3 and ACS detectors, we develop a method to simultaneously determine the relative extinction and the fraction of obscured starlight for five dusty complexes located in the circumnuclear region. The extinction curves of these clumps (RV =2.4-2.5) are steeper than the average Galactic one (RV =3.1), but are similar to optical and near-infrared curves recently measured toward the Galactic Bulge (RV~2.5). This similarity suggests that steep extinction curves may be common in the inner bulge of galaxies. In the ultraviolet, the extinction curves of these clumps are also unusual. We find that one dusty clump (size <2 pc) exhibits a strong UV bump (extinction at 2175A), more than three standard deviation higher than that predicted by common models. Although the high stellar metallicity of the M31 bulge indicates that there are sufficient carbon and silicon to produce large dust grains, the grains may have been destroyed by supernova explosions or past activity of the central super-massive black hole, resulting in the observed steepened extinction curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.