Abstract

Cyclic di-adenosine monophosphate (c-di-AMP) is a widely distributed second messenger that appears to be essential in multiple bacterial species, including the Gram-positive facultative intracellular pathogen Listeria monocytogenes. In this study, the only L. monocytogenes diadenylate cyclase gene, dacA, was deleted using a Cre-lox system activated during infection of cultured macrophages. All ΔdacA strains recovered from infected cells harbored one or more suppressor mutations that allowed growth in the absence of c-di-AMP. Suppressor mutations in the synthase domain of the bi-functional (p)ppGpp synthase/hydrolase led to reduced (p)ppGpp levels. A genetic assay confirmed that dacA was essential in wild-type but not strains lacking all three (p)ppGpp synthases. Further genetic analysis suggested that c-di-AMP was essential because accumulated (p)ppGpp altered GTP concentrations, thereby inactivating the pleiotropic transcriptional regulator CodY. We propose that c-di-AMP is conditionally essential for metabolic changes that occur in growth in rich medium and host cells but not minimal medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call