Abstract
Novel synthetic methodologies allow increasingly efficient access to known organic materials, as well as the preparation of otherwise inaccessible species. Pd-catalyzed coupling of aromatic dihalides to ortho-diaminoarenes furnishes embedded stable N,N'-dihydropyrazines expediently and in often excellent yields. The embedded N,N'-dihydropyrazines can then be oxidized by MnO2 to give substituted azatetracenes, azapentacenes, azahexacenes, and azaheptacenes, which are soluble, processable, and stable. This powerful Pd-catalyzed methodology allows the preparation of azaacenes, including diaza-, tetraaza- and hexaazaacenes. In combination with a suitable Pd precursor, Buchwald-type biarylphosphines have been shown to give excellent results. Activated dihalides such as 2,3-dihaloquinoxalines are coupled easily under simplified conditions, whereas 2,3-dibromoacenes require more stringent conditions and advanced catalyst precursors. Pd catalysts effect the assembly of azaacenes with otherwise difficult to obtain substitution patterns. High yields and flexibility make this method most attractive.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.