Abstract

Abstract The Paleoproterozoic Francevillian succession of Gabon has figured prominently in concepts about Earth’s early oxygenation and genesis of a large positive excursion in carbon-isotope values, the Lomagundi-Jatuli event (LJE). Here we present a detailed study of a 139-m-long core of Francevillian rocks marked by carbonate δ13C (δ13Ccarb) values of 5‰–9‰ that decline upsection to near 0‰, a trend inferred by many workers as a fingerprint of the LJE and its termination. However, we show that the shift in δ13Ccarb values coincides with a facies change: shallow-marine facies are marked by the strongly positive values, whereas deeper-marine facies (below storm wave base) are at ∼0‰. The most circumspect interpretation of such facies dependence of δ13Ccarb is that shallow-marine settings record the isotope effects of local physical and biochemical processes driving the ambient dissolved inorganic carbon (DIC) pool to heavier values, and the lighter values (∼0‰) in deeper-water facies track the DIC of the open-marine realm where δ13C was largely unaffected by fractionations occurring in shallow-water settings. Further, a transgressing redoxcline created conditions for precipitation of Mn-bearing minerals and chemotrophic microbial biota, including methane cycling communities evident by organic δ13C (δ13Corg) values of −47‰ and Δδcarb-org values as high as 46‰. Thus, the Francevillian C-isotope profile reflects basin-specific conditions and is not a priori an indicator of global C-cycle disturbances nor of the termination of the LJE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call