Abstract
The Independence of Irrelevant Alternatives (IIA) property of the multinomial logit (MNL) model imposes the restriction of zero covariance between the utilities of pairs of alternatives. This restriction is inappropriate for many choice situations; those in which some pairs or sets of alternatives share the same unobserved attributes. The nested logit (NL) model relaxes the zero covariance restriction of the MNL model but imposes the restriction of equal covariance among all alternatives in a common nest and zero covariance otherwise. The paired combinatorial logit (PCL) model relaxes these restrictions further by allowing different covariances for each pair of alternatives. This relaxation enables the estimation of differential competitive relationships between each pair of alternatives. The closed form of the PCL model retains the computational advantages of other logit models while the more flexible error correlation structure, compared to the MNL model and NL models, enables better representation of many choice situations. This paper describes the derivation, structure, properties and estimation of the PCL model. The empirical results demonstrate that the PCL model is statistically superior to the MNL and NL models and may lead to importantly different travel forecasts and policy decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.