Abstract

Black hole thermodynamics suggests that in order to describe the physics of distant observers, one may model a black hole as a standard quantum system with a density of states set by the Bekenstein–Hawking entropy [Formula: see text]. This idea has long been considered to be in strong tension with Hawking’s prediction that radiation from black holes is nearly thermal, and with low-energy gravity more generally. But the past two years have shown that low-energy gravity does offer a self-consistent description of black hole evaporation consistent with the above idea, and which in particular reproduces the famous Page curve. We provide a brief overview of this new paradigm, focusing on Lorentz-signature asymptotically-flat spacetimes and emphasizing operationally defined observables that probe the entropy of Hawking radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.