Abstract
In this article we give necessary and sufficient conditions for the boundedness of the weighted Hardy-Cesa ro operators which is associated to the parameter curve γ(t, x) = γ(t)x defined by \({U_{\psi ,\gamma }}f\left( x \right) = \int {\left( {\gamma \left( t \right)x} \right)} \psi \left( t \right)dt\) on the weighted Morrey-Herz space over the p-adic field. Especially, the corresponding operator norms are established in each case. These results actually extend those of K. S. Rim and J. Lee [27] and of the authors [9]. Moreover, the sufficient conditions of boundedness of commutators of p-adic weighted Hardy-Cesaro operator with symbols in the Lipschitz space on the weighted Morrey-Herz space are also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: P-Adic Numbers, Ultrametric Analysis, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.