Abstract

We describe the PACE-MAPP algorithm that simultaneously retrieves aerosol and ocean optical parameters using multiangle and multispectral polarimeter measurements from the SPEXone, Hyper-Angular Rainbow Polarimeter 2 (HARP2), and Ocean Color Instrument (OCI) instruments onboard the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) observing system. PACE-MAPP is adapted from the Research Scanning Polarimeter (RSP) Microphysical Aerosol Properties from Polarimetry (RSP-MAPP) algorithm. The PACE-MAPP algorithm uses a coupled vector radiative transfer model such that the atmosphere and ocean are always considered together as one system. Consequently, this physically consistent treatment of the system across the ultraviolet, (UV: 300–400 nm), visible (VIS: 400–700 nm), near-infrared (NIR: 700–1100 nm), and shortwave infrared (SWIR: 1100–2400 nm) spectral bands ensures that negative water-leaving radiances do not occur. PACE-MAPP uses optimal estimation to simultaneously characterize the optical and microphysical properties of the atmosphere’s aerosol and ocean constituents, find the optimal solution, and evaluate the uncertainties of each parameter. This coupled approach, together with multiangle, multispectral polarimeter measurements, enables retrievals of aerosol and water properties across the Earth’s oceans. The PACE-MAPP algorithm provides aerosol and ocean products for both the open ocean and coastal areas and is designed to be accurate, modular, and efficient by using fast neural networks that replace the time-consuming vector radiative transfer calculations in the forward model. We provide an overview of the PACE-MAPP framework and quantify its expected retrieval performance on simulated PACE-like data using a bimodal aerosol model for observations of fine-mode absorbing aerosols and coarse-mode sea salt particles. We also quantify its performance for observations over the ocean of dust-laden scenes using a trimodal aerosol model that incorporates non-spherical coarse-mode dust particles. Lastly, PACE-MAPP’s modular capabilities are described, and we discuss plans to implement a new ocean bio-optical model that uses a mixture of coated and uncoated particles, as well as a thin cirrus model for detecting and correcting for sub-visual ice clouds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.