Abstract

The cytoprotective ATP receptor P2Y11 is upregulated during M2 macrophage differentiation and contributes to the anti-inflammatory properties of this macrophage subset. Here, we studied P2Y11-induced reprogramming of human M2 macrophages at the level of mRNA and protein expression. Upregulation of IL-1 receptor (IL-1R) and its known downstream effectors VEGF, CCL20 and SOCS3 as well as downregulation of the ATP-degrading ecto-ATPase CD39 emerged as hallmarks of P2Y11 activation. The anti-inflammatory signature of the P2Y11 transcriptome was further characterized by the downregulation of P2RX7, toll-like receptors and inflammasome components. P2Y11-induced IL-1R upregulation formed the basis for reinforced IL-1 responsiveness of activated M2 macrophages, as IL-1α and IL-1ß each enhanced P2Y11-induced secretion of VEGF and CCL20 as well as the previously reported shedding of soluble tumor necrosis factor receptor 2 (sTNFR2). Raising intracellular cyclic AMP (cAMP) in M2 macrophages through phosphodiesterase 4 inhibition enhanced P2Y11-driven responses. The cAMP-binding effector, exchange protein activated by cAMP 1 (Epac1), which is known to induce SOCS3, differentially regulated the P2Y11/IL-1R response because pharmacological Epac1 inhibition enhanced sTNFR2 and CCL20 release, but had no effect on VEGF secretion. In addition to cAMP, calcium and protein kinase C participated in P2Y11 signaling. Our study reveals how P2Y11 harnesses canonical and IL-1R signaling to promote an anti-inflammatory and pro-angiogenic switch of human M2 macrophages, which may be controlled in part by an Epac1-SOCS3 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call