Abstract

In this work, we show that P2 nucleotide receptors control lipopolysaccharide (LPS)-induced neutrophil migration in the mouse air pouch model. Neutrophil infiltration in LPS-treated air pouches was reduced by the intravenous (iv) administration of the non-selective P2 receptor antagonist PPADS but not by suramin and RB-2. In addition, the iv administration of a P2 receptor ligand, UTP, enhanced LPS-induced neutrophil migration. In contrast, the iv injection of UDP had no effect on neutrophil migration. These data suggest that LPS-induced neutrophil migration in the air pouch could involve P2Y 4 receptor which is antagonized by PPADS, activated by UTP, but not UDP, and insensitive to suramin. The inhibition of neutrophil migration by PPADS correlated with a diminished secretion of chemokines macrophage inflammatory protein-2 (MIP-2) and keratinocyte-derived chemokine (KC) in the air pouch exudates. As determined in vitro, PPADS did not affect MIP-2 and KC release from air pouch resident cells nor from accumulated neutrophils. MIP-2 and KC production in the LPS-treated air pouches correlated with an early neutrophil migration (1 h after LPS injection), and both of these effects were significantly reduced in mice administered with PPADS. Altogether, these data suggest that P2Y 4 receptor expressed in circulating leukocytes and/or endothelium controls LPS-induced acute neutrophil recruitment in mouse air pouch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call