Abstract

A p-adically uniformized variety is a smooth projective variety whose associated rigid analytic space admits a uniformization by Drinfeld's p-adic symmetric domain. For such a variety we prove the monodromy-weight conjecture, which asserts that two independently defined filtrations on the log-crystalline cohomology of the special fiber in fact coincide. The proof proceeds by reducing the conjecture to a combinatorial statement about harmonic cochains on the Bruhat–Tits building, which was verified in our previous work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.