Abstract

Several species belonging to the genus Entamoeba can colonize the mouth or the human gut; however, only Entamoeba histolytica is pathogenic to the host, causing the disease amoebiasis. This illness is responsible for one hundred thousand human deaths per year worldwide, affecting mainly underdeveloped countries. Throughout its entire life cycle and invasion of human tissues, the parasite is constantly subjected to stress conditions. Under in vitro culture, this microaerophilic parasite can tolerate up to 5 % oxygen concentrations; however, during tissue invasion the parasite has to cope with the higher oxygen content found in well-perfused tissues (4-14 %) and with reactive oxygen and nitrogen species derived from both host and parasite. In this work, the role of the amoebic oxygen reduction pathway (ORP) and heat shock response (HSP) are analyzed in relation to E. histolytica pathogenicity. The data suggest that in contrast with non-pathogenic E. dispar, the higher level of ORP and HSPs displayed by E. histolytica enables its survival in tissues by diminishing and detoxifying intracellular oxidants and repairing damaged proteins to allow metabolic fluxes, replication and immune evasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.