Abstract

This study investigates the effects of normobaric hypoxia on repeated sprint exercise (RSE) with different balance between oxidative (phosphocreatine and oxidative pathway) and glycolytic contributions. Therefore, performance and psychophysiological responses were compared during RSE to exhaustion with the same exercise-to-rest ratio (1:2) but different sprint durations (5, 10, or 20 s) either in normoxic (RSN) or hypoxic (RSH; F io2 = 0.13) conditions. On separate visits, 10 active participants completed in random order three cycling RSN (5:10; 10:20 and 20:40) and three similar RSH sessions to exhaustion. Vastus lateralis muscle oxygenation was recorded by near-infrared spectroscopy. Blood lactate concentration, limb and breathing discomfort, and ratings of perceived exertion were measured. Total sprint number was smaller in hypoxia than in normoxia for 5:10 (20.8 ± 8.6 vs 14.7 ± 3.4; P = 0.014) and 10:20 (13.7 ± 6.3 vs 8.8 ± 2.5; P = 0.018) but not 20:40 (5.6 ± 1.9 vs 5.6 ± 2.5). The fatigue index was larger in hypoxia only for 5:10 (-43.5%, P < 0.001). Irrespective of condition, blood lactate concentration increased with the sprint duration with higher values for 20:40 than 5:10 (13.1 ± 2.7 vs 11.5 ± 2.2 mmoL·L -1 ; P = 0.027). Limb and breathing discomfort and ratings of perceived exertion did not differ in all RSE. Muscle oxygenation was mainly impacted by sprint duration (i.e., main effect of sprint duration on [HHb] min, [tHb] max, Δ[HHb], and Δ[tHb]) but not by hypoxia. The normoxia-to-hypoxia percentage decrease for total sprint number for 5:10 was correlated with the highest power output over 5 s ( R2 = 0.55; P = 0.013) and 10 s ( R2 = 0.53; P = 0.016). Hypoxia impairs repeated sprint ability when the oxidative but not the glycolytic contribution is substantial. The oxidative-glycolytic balance, influenced partly by sprint duration, is key during repeated sprint in hypoxia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.