Abstract

Understanding the toxicological properties of MnIII-porphyrins (MnTPPS, MnTMPyP, or MnTBAP) can provide important biochemical rationales in developing them as the therapeutic drugs against protein tyrosine nitration-induced inflammation diseases. Here, we present a comprehensive understanding of the pH-dependent redox behaviors of these MnIII-porphyrins and their structural effects on catalyzing bovine serum albumin (BSA) nitration in the presence of H2O2 and NO2-. It was found that both MnTPPS and MnTBAP stand out in catalyzing BSA nitration at physiologically close condition (pH 8), yet they are less effective at pH 6 and 10. MnTMPyP was shown to have no ability to catalyze BSA nitration under all tested pHs (pH 6, 8, and 10). The kinetics and active intermediate determination through electrochemistry method revealed that both the pH-dependent redox behavior of the central metal cation and the antioxidant capability of porphin derivative contribute to the catalytic activities of three MnIII-porphyrins in BSA nitration in the presence of H2O2/NO2-. These comprehensive studies on the oxidative reactivity of MnIII-porphyrins toward BSA nitration may provide new clues for searching the manganese-based therapeutic drugs against the inflammation-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call