Abstract

The oxidative destruction of lignin in the ozonation of aspen wood was studied. The kinetic curves of ozone consumption for samples with different contents of water were obtained. The consumption of ozone increased as the content of water grew. The second derivatives of the UV absorption spectra of lignin were obtained to show that the principal direction of lignin transformations under the action of ozone was the destruction of its aromatic constituents with the formation of carboxyl- and carbonyl-containing compounds. Measurements of the UV diffuse reflectance and EPR spectra of wood showed that the ozonation of wood caused the destruction of lignin quinoid structures. Part of lignin remained unchanged under the action of ozone. A key role in the destruction of wood lignin was played by ozone dissolved in water. Varying the content of water in wood samples allows various lignin transformation products to be obtained through ozonation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call