Abstract

Manganese (II) ions (Mn(II)) catalyse the oxidative degradation of Calmagite (CAL, 2-hydroxy-1-(2-hydroxy-5methylphenylazo)-4-naphthalenesulfonic acid) at room temperature using added and in situ generated hydrogen peroxide (H2O2), using 1,2-dihydroxybenzene-3,5-disulfonate, disodium salt and monohydrate (Tiron) as the co-catalyst for the in situ generation of H2O2. The percentage of CAL degradation with the in situ generated H2O2 was 91.1 % after 30 min which is lower than that in the added H2O2/Mn(II) system (96.0 %). A one-eighth-lives method was applied to investigate the kinetic parameters in the added H2O2 system, with and without Mn(II), involving phosphate, carbonate, and two biological buffers at different pHs. Percarbonate (HCO4−) was found to be the main reactive species for CAL degradation in the added H2O2 system buffered by carbonate in the absence of Mn(II). Manganese (IV) = O (Mn(IV) = O) and manganese(V) = O (Mn(V) = O) are the main reactive species in the added H2O2/Mn(II) system buffered by carbonate and non-carbonate buffers respectively. pH 8.5 was the optimum pH for CAL degradation when buffered by carbonate, while pH 10.0 is the best pH for the systems not using carbonate buffer. Using a high performance liquid chromatography/electrospray ionisation mass spectrometer (HPLC/ESI-MS), the degradation intermediates of CAL were identified as 1-amino-2-naphthol-4-sulfonate ion, 1-amino-2-naphthol-4-sulfinic ion, 1-amino-2-naphthol, and 1-nitroso-2-naphthol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.