Abstract

Despite the enormous advances in medicine, brain tumours are still among the lesser-known types of tumours and carry the worst prognoses. Transition metals are believed to play an essential role in carcinogenesis. The aim of this study was to determine differences in the average oxidation state and trends in the changes in the chemical environment of iron and zinc contained in healthy and neoplastic tissues of the human brain. For this purpose, X-ray Absorption Spectroscopy was used, which enables the study of disordered matter. The samples were taken intraoperatively and then immediately frozen to slow down chemical processes. Sixteen tumour samples with various malignancy grades were studied as well as one control sample. For each sample four to eight spectra were recorded, with a shift between them not greater than 0.2 eV. In all of the samples, iron occurred in compounds with both Fe(2+) and Fe(3+). However, the ratio of Fe(ii) to Fe(iii) content in the tissue visibly increased with the tumour malignancy grade. The change in the oxidation state of iron did not correlate with the hypoxia level of the tissues. Analysis of EXAFS spectra of zinc atoms showed that the chemical environment of zinc atoms differed with the tumour malignancy grade. Additionally, cryogenic conditions were found to produce positive results in studies of biological samples, whose form under such conditions is close to their native state, without preparation-caused artefacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.