Abstract

The oxidation property of SiC-B4C-xAl2O3 (x ranges from 0 wt% to 30 wt%) ceramics was studied in air at 1400 ℃. Results show that the porous oxide layer becomes dense and smooth with addition of Al2O3. When the content of Al2O3 is proper, the DOP (degree of polymerization) of borosilicate network can be improved with increase of Al2O3 content, inhibiting the migration of atoms and molecular groups. With that, the crystallization of SiO2 and volatilization of B2O3 can be restrained. When the content of Al2O3 is excessive, the DOP of borosilicate network will be decreased, deteriorating the oxide layer morphology. It is believed that the damage of borosilicate network by excess Al2O3 should be responsible for this phenomenon. In this research, the SiC-B4C ceramic with optimal oxidation resistant can be obtained when the content of Al2O3 is 15 wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.