Abstract
RuO 2 (110) surfaces were prepared by exposing Ru(0001) to 107 L of O2 at 700 K. Postexposure of O2 at 300 K resulted in an additional oxygen species (O-cus) adsorbed on coordinatively unsaturated Ru atoms (Ru-cus). The surface was then exposed to CO at 300 K and studied by thermal desorption spectroscopy (TDS) and high-resolution electron energy loss spectroscopy (HREELS). It is demonstrated that CO is oxidized at 300 K through reaction with both the O-cus as well as with surface O-atoms held in bridge positions (O-bridge). Although—at room temperature—CO adsorbs intermediately on the Ru-cus atoms, it is stable only at the Ru atoms underneath the O-bridge after the latter has been reacted off. At room temperature only surface oxygen takes part in the CO oxidation and the oxygen-depleted surface can be restored by O2 exposure, so that under steady-state flow conditions an oxygen-deficient surface will exist whose stoichiometry will be determined by the ratio of partial pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.