Abstract

A good knowledge of the kinetics of the fuel combustion under high pressure is necessary for predicting the performances of modern diesel and HCCI engines and pollutants emissions.The kinetics of oxidation of a synthetic diesel fuel was studied in a jet-stirred reactor (JSR) at pressures extending from 1 to 10 atm, in the temperature range 800–1400 K, and for equivalence ratios in the range 0.5–2.0. The concentration profiles of molecular species, reactants, stable intermediates, and products, were measured by sonic probe sampling followed by on-line GC-MS-FID analyses, and off-line GC-TCD-FID and GC-MS analyses. The experiments were modeled using a detailed kinetic reaction mechanism consisting of 2755 reversible reactions and 377 species. The chemical surrogate model-fuel used consisted of a mixture of n-hexadecane (36.1% by weight, 23.5% vol.), n-propylcyclohexane (23.1% w, 26.9% vol.), n-propylbenzene (18.7% w, 22.9% vol.), iso-octane (14.7% w, 19% vol.), and 1-methylnaphthalene (7.4% w, 7.7% vol.). The proposed kinetic reaction mechanism used in the modeling yielded a good representation of the kinetics of oxidation of a synthetic diesel fuel under JSR conditions. Reaction path analyses were used to delineate the most important reaction paths during the oxidation of the fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.