Abstract

Abstract This book provides a introduction into linear algebra which covers the mathematical set-up as well as applications to science. After the introductory material on sets, functions, groups and fields, the basic features of vector spaces are developed, including linear independence, bases, dimension, vector subspaces and linear maps. Practical methods for calculating with dot, cross and triple products are introduced early on. The theory of linear maps and their relation to matrices is developed in detail, culminating in the rank theorem. Algorithmic methods bases on row reduction and determinants are discussed an applied to computing the rank and the inverse of matrices and to solve systems of linear equations. Eigenvalues and eigenvectors and the application to diagonalising linear maps, as well as scalar products and unitary linear maps are covered in detail. Advanced topics included are the Jordon normal form, normal linear maps, the singular value decomposition, bi-linear and sesqui-linear forms, duality and tensors. The book also included short expositions of diverse scientific applications of linear algebra, including to internet search, classical mechanics, graph theory, cryptography, coding theory, data compression, special relativity, quantum mechanics and quantum computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.