Abstract

Chalcopyrite (CuFeS₂) is the world's main source of copper. Electrification of the global economy will rely on economically viable Cu dissolution from low grade chalcopyrite ores, but this process is particularly slow. The reason for this slow reaction has been in dispute for over 50 years. In this study, electrochemical analysis showed that n-type chalcopyrite is in an accumulation state when immersed in electrolyte, not in a depletion state as is commonly assumed. A leaching test and surface analysis confirmed the formation of a Cu-rich surface layer during oxidative leaching. In addition, a similar leaching test on covellite (CuS) showed leaching kinetics that were as slow as chalcopyrite. Ex-situ current-voltage analysis showed that the Cu-rich (covellite-like) product layer on the surface of chalcopyrite was a p-type semiconductor. Therefore, as leaching progresses, chalcopyrite transitions from a resistor to a diode. Three mechanisms for slow dissolution of chalcopyrite in acidic ferric media are proposed based on these tests: 1. The dielectric breakdown potential of chalcopyrite (0.7 V vs Ag/AgCl) is higher than what the ferric/ferrous redox couple can provide (0.5 V). 2. A chemically stable covellite-like surface layer prevents further Cu dissolution. 3. Rapid formation of a p-n junction on the leached chalcopyrite surface hinders the electrochemical process. We hypothesize that all three mechanisms together prevent the full dissolution of chalcopyrite under oxidative conditions at ambient temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call