Abstract

Microenvironmental hypoxia gives many tumor cells the capacity for drug resistance. Thioredoxin family members play critical roles in the regulation of cellular redox homeostasis in a stressed environment. In this study, we established a hypoxia–drug resistance (hypoxia-DR) model using HepG2 cells and discovered that the overexpression and nuclear translocation of thioredoxin-1 (Trx-1) are closely associated with this resistance through the regulation of the metabolism by the oxidative stress response to glycolysis. Intranuclear Trx-1 enhances the DNA-binding activity of HIF-1α via its interaction with and reducing action on Ref-1, resulting in increased expression of glycolysis-related proteins (PDHK1, HKII, and LDHA), glucose uptake, and lactate generation under hypoxia. Meanwhile, we found that GL-V9, a newly synthesized flavonoid derivative, shows an ability to reverse the hypoxia-DR and has low toxicity both in vivo and in vitro. GL-V9 could inhibit the expression and nuclear translocation of Trx-1 and then suppress HIF-1α DNA-binding activity by inhibiting the Trx-1/Ref-1 axis. As a result, glycolysis is weakened and oxidative phosphorylation is enhanced. Thus, GL-V9 leads to an increment in intracellular ROS generation and consequently intensified apoptosis induced by DDP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call