Abstract

A hybrid magnesium alloy nanocomposite containing AlN nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable AlN and intermetallic nanoparticle distribution, nondominant(0 0 0 2)texture in the longitudinal direction, and 17% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy, the nanocomposite exhibited higher tensile yield strength (0.2% TYS) and ultimate tensile strength (UTS) without significant compromise in failure strain and energy absorbed until fracture (EA) (+5%, +5%, −14% and −10%, resp.). Compared to the monolithic hybrid alloy, the nanocomposite exhibited unchanged compressive yield strength (0.2% CYS) and higher ultimate compressive strength (UCS), failure strain, and EA (+1%, +6%, +24%, and +6%, resp.). The overall effects of AlN nanoparticle addition on the tensile and compressive properties of the hybrid magnesium alloy is investigated in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.