Abstract

Milk, an essential source of offspring nourishment, varies in it’s composition and properties significantly across species. In human nutrition, fresh milk and dairy products are valuable sources of protein, fat and energy, and are an important part of daily meals. Most of the world’s milk production (85 %) comes from cows followed by buffaloes, goats, ewes, mares and donkeys. However milk related food allergies in infants may be a reason for health problems and may cause a decrease in milk. The objective of this paper was to give an overview of the overall composition of milk and fat from different species in comparison to women milk. Regarding the overall milk composition remarkable differences in energy content, fat, lactose, protein and ash of the various milks were found, but also some similarities among milk from ruminants and non-ruminants were detected. The structures of fat globule membranes were similar among non-ruminants and women milk, while the milk fat globule structure in ruminants differed significantly. The size of fat globules was significantly different between species and highly correlated to the milk fat content, regardless of the specie. The amount of triacylglycerols was notably higher, while the amount of free fatty acids and phospholipids was notably lower in milk from ruminants and women compared to milk from mares and donkeys. The triacylglycerol structure in women and non-ruminantsˈ was similar. The percentage of saturated and monounsaturated fatty acids was lower, while the unsaturated fatty acid content was higher in milk from non-ruminants, with a remarkably higher percentage of C-18:2 and C-18:3. The cholesterol content was similar in women and ruminantsˈ milk, but lower in that of non-ruminants. This review indicates that milk from non-ruminants could be more suitable for human nourishment than milk from ruminants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.