Abstract
Multilayered Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and lead magnesium niobate lead titanate Pb (Mg1/3Nb2/3) O3–PbTiO3 (PMN-35PT) composition-based piezoelectric nanogenerators (PNGs) were fabricated as series, parallel, and combined series-parallel connections using various layer-by-layer assembly techniques. Supporting the theoretical approaches with experimental results shows that the fabricated four-layered PNG with parallel connections (4L-P) reached an open-circuit voltage of 0.4 V (VRMS) and a maximum electrical power of 0.3 µW (PRMS) by drawing a current (IRMS) of 1.46 µA under a resistive load of 140.2 KΩ. Increasing the capacitance and decreasing the impedance with the fabrication of the four-layer PNG by connecting the layers in parallel connection with the support of the impedance matching process led to an increase in electrical output. With the use of an impedance matching system, the piezoelectric performance tests revealed that the 4L-P-based PNG had a 6.7 times greater electrical power efficiency (72.92 µW) at the vibrational frequency of 20 Hz compared to that of the single-layered PNG (10.82 µW). Furthermore, the multilayer PNG was successfully used as a wearable sensor for the monitoring of human body motions in real time on an IOT (Internet of Things) platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.