Abstract

The growth processes from protoplanetary dust to planetesimals are not fully understood. Laboratory experiments and theoretical models have shown that collisions among the dust aggregates can lead to sticking, bouncing, and fragmentation. However, no systematic study on the collisional outcome of protoplanetary dust has been performed so far so that a physical model of the dust evolution in protoplanetary disks is still missing. We intend to map the parameter space for the collisional interaction of arbitrarily porous dust aggregates. This parameter space encompasses the dust-aggregate masses, their porosities and the collision velocity. With such a complete mapping of the collisional outcomes of protoplanetary dust aggregates, it will be possible to follow the collisional evolution of dust in a protoplanetary disk environment. We use literature data, perform own laboratory experiments, and apply simple physical models to get a complete picture of the collisional interaction of protoplanetary dust aggregates. In our study, we found four different types of sticking, two types of bouncing, and three types of fragmentation as possible outcomes in collisions among protoplanetary dust aggregates. We distinguish between eight combinations of porosity and mass ratio. For each of these cases, we present a complete collision model for dust-aggregate masses between 10^-12 and 10^2 g and collision velocities in the range 10^-4 to 10^4 cm/s for arbitrary porosities. This model comprises the collisional outcome, the mass(es) of the resulting aggregate(s) and their porosities. We present the first complete collision model for protoplanetary dust. This collision model can be used for the determination of the dust-growth rate in protoplanetary disks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call