Abstract

The dynamic mechanical response of high-performance thermoplastic composites over a wide range of strain rates is a challenging research topic for extreme environmental survivability in the field of aerospace engineering. This paper investigates the evolution of the dynamic properties of woven thermoplastic composites with strain rate and damage process at elevated temperatures. Out-of-plane dynamic-compression tests of glass-fiber (GF)- and carbon-fiber (CF)-reinforced polyphenylene sulfide (PPS) composites were performed using a split Hopkinson pressure bar (SHPB). Results showed that thermoplastic composites possess strain-rate strengthening effects and high-temperature weakening dependence. GF/PPS and CF/PPS composites had the same strain-rate sensitivity (SRS) below the threshold strain rate. The softening of the matrix at elevated temperatures decreased the modulus but had little effect on strength. Some empirical formulations, including strain-rate and temperature effects, are proposed for more accurately predicting the out-of-plane dynamic-compression behavior of thermoplastic composites. Lastly, the final failure of the specimens was examined by scanning electron microscopy (SEM) to explore potential failure mechanisms, such as fiber-bundle shear fracture at high strain rates and stretch break at elevated temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.