Abstract

Building occupants are either used or compelled to live in overheated indoors in buildings, particularly in urban environments in the tropics. It doesn’t mean that they are acclimatized to overheated indoors. This scenario has become a normalcy in the current building design and operational practice. The fail- ure of building design to control heat transfer from outside to inside and remove indoor heat generat- ed by occupants and equipment in buildings to the outside is seen as a major reason for indoor over- heating. This normalcy is problematic for the occu- pants in particular and to the environment at large. It is problematic because of its negative effect on the indoor comfort level on one hand and associated emissions due to wasteful (or rather extensive) use of energy for cooling on the other hand. Overheating elevates the indoor thermal environment particu- larly the standard effective air temperature higher than the preferred thermal comfort range. Similarly, the dramatic effect of daylighting that could be gen- erated from architectural space is seen as least re- garded and not taken into the indoors meaningfully in today’s average building design and practice, thus largely depending on active systems. Lack of opti- mum balance in daylight, artificial or mixed mode visual environments demands more energy either to maintain indoor visibility or to combat glare and heat stress associated with tropical daylighting, or both. This overall practice uses extensive amounts of ac- tive energy to maintain indoor comfort (both thermal and visual) contributing to emissions and weakening the demand side efficiency of operational stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call