Abstract

In the generalized Hamiltonian formalism by Dirac, the method of constructing the generator of local-symmetry transformations for systems with first- and second-class constraints (without restrictions on the algebra of constraints) is obtained from the requirement for them to map the solutions of the Hamiltonian equations of motion into the solutions of the same equations. It is proved that second-class constraints do not contribute to the transformation law of the local symmetry entirely stipulated by all the first-class constraints (and only by them). A mechanism of occurrence of higher derivatives of coordinates and group parameters in the symmetry transformation law in the Noether second theorem is elucidated. It is shown that the obtained transformations of symmetry are canonical in the extended (by Ostrogradsky) phase space. An application of the method in theories with higher derivatives is demonstrated with an example of the spinor Christ -- Lee model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call