Abstract

Previous powerful genome-wide association studies (GWASs) and whole-genome sequencing have identified multiple single-nucleotide polymorphisms (SNPs) located over 69kb upstream of CTNNB1 at 3p22.1 locus associated with osteoporosis. The CTNNB1 gene encodes β-catenin that is an integral part of adherens junctions and the primary mediator of the canonical Wnt signaling pathway. The causal variants and underlying molecular mechanisms of the osteoporosis susceptibility locus 3p22.1 remains unknown. Through comprehensive computational analyses, including expression quantitative trait locus (eQTL), high-throughput chromatin interaction (Hi-C), epigenomic and functional annotation, four enhancer SNPs (rs9820407, rs9878224, rs454690 and rs9832204) were prioritized as potential causal SNPs at 3p22.1 for osteoporosis. Rs9820407 displayed the strongest enhancer activity in dual-luciferase assays. Specifically, the minor rs9820407-A can preferentially bind transcription factor FOXC1, elevate the enhancer activity and increase CTNNB1 expression. The architectural protein CTCF was presumably involved in long-range chromatin interaction between rs9820407 and CTNNB1. Our study provided a mechanistic insight into how noncoding enhancer SNP rs9820407 distally regulates CTNNB1 expression and modulates osteoporosis risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.