Abstract

Dense and porous HA and Si-HA discs and granules with varying percentages of silicon substitution have been produced and physically and chemically characterised using scanning electron microscopy, surface area analysis, porosimetry, density measurement, image analysis, Xray diffraction, X-ray fluorescence, FT-infrared spectroscopy and in-vitro and in-vivo testing. Results have shown that cell adhesion in-vitro and bone apposition in-vivo are enhanced by the presence of silicon substitution in the hydroxyapatite structure. The biological response to the materials appears to indicate an optimum outcome for levels of silicon substitution of 0.8wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.