Abstract
The osteocyte is often considered to be a cell that is hardly active, yet it turns out to have a central role in bone remodeling. It functions as a mechanoreceptor that translates mechanical stimuli into biochemical signals. The expression of PGE2 by loaded osteocytes and the consequent activation of the cAMP/PKA pathway, together with stabilization of β-catenin, may permit cross talk with the canonical Wnt/β-catenin pathway, the activation of which is increased by the load-dependent reduction of the expression of DKK1 and of sclerostin (Sost, the secretion product of old osteocytes). These signal pathways, as well as TGF-β and BMP expression, stimulate the differentiation and activity of osteoblasts, reduce their apoptosis, and enhance bone formation. The expressions of MEPE, FGF-23 and DMP-1 further contribute to the osteocytic control of bone metabolism. Periosteocytic osteolysis, if definitively demonstrated, would constitute another fundamental function of osteocytes. A thorough understanding of the osteocyte’s activities could open up new strategies in the therapy of metabolic bone diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.