Abstract
Influences of promoter regulatory elements that are responsive to basal and tissue-restricted transactivation factors, steroid hormones, growth factors and other physiologic mediators has provided the basis for understanding regulatory mechanisms contributing to developmental expression of osteocalcin, tissue specificity and biological activity (reviewed in [1-3]). These regulatory elements and cognate transcription factors support postproliferative transcriptional activation and steroid hormone (e.g. vitamin D) enhancement at the onset of extracellular matrix mineralization during osteoblast differentiation. Three parameters of nuclear structure contribute to osteocalcin gene transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of developmental as well as phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented which are consistent with involvement of multiple levels of nuclear architecture in tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization and the nuclear matrix are considered which influence transcription of the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.