Abstract
Longitudinal quantitative evaluation of cartilage disease requires reproducible measurements over time. We report 8 years of quality assurance (QA) metrics for quantitative magnetic resonance (MR) knee analyses from the Osteoarthritis Initiative (OAI) and show the impact of MR system, phantom, and acquisition protocol changes. Key 3T MR QA metrics, including signal-to-noise, signal uniformity, T2 relaxation times, and geometric distortion, were quantified monthly on two different phantoms using an automated program. Over 8 years, phantom measurements showed root-mean-square coefficient-of-variation reproducibility of <0.25% (190.0 mm diameter) and <0.20% (148.0 mm length), resulting in spherical volume reproducibility of <0.35%. T2 relaxation time reproducibility varied from 1.5% to 5.3%; seasonal fluctuations were observed at two sites. All other QA goals were met except: slice thicknesses were consistently larger than nominal on turbo spin echo images; knee coil signal uniformity and signal level varied significantly over time. The longitudinal variations for a spherical volume should have minimal impact on the accuracy and reproducibility of cartilage volume and thickness measurements as they are an order of magnitude smaller than reported for either unpaired or paired (repositioning and reanalysis) precision errors. This stability should enable direct comparison of baseline and follow-up images. Cross-comparison of the geometric results from all four OAI sites reveal that the MR systems do not statistically differ and enable results to be pooled. MR QA results identified similar technical issues as previously published. Geometric accuracy stability should have the greatest impact on quantitative analysis of longitudinal change in cartilage volume and thickness precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.